
Torsion of an axiqmmetric anlsotroplc body 1031 

Hence cs = d, = 0, which results in specific conditions imposed on the functions 

fi (2) and f* (s)* 
AS an illustration, let us consider the case when 

fl (2) = h, + haa=, fn = h, + 42 + bza 

(h,, hl k,, 4, k, are constants). Then we obtain from (4.7) 

C, = (- 1)” f$- , d, = & (I(- i)* - $1 kl + (- I)% Zkaf 

Fka 
&----~, ko=--1 

(4.6) 

(4.9) 

The relationships (4.9) impose constraints on the coefficients fr and k . 
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Within the scope of models of elastic-plastic media, without taking account 

of thermal effects, the rates of change in the stresses are determined uniquely 
by means of a given state of stress and strain rates [ 11. The constraint which 
should be imposed on a coupled thermoplasticity model so that the mentioned 

property would also exist in this case is considered herein. It is shown for the 
simplest coupled thermoplasticity mode&that when heat conduction is neglec- 
ted. there exists a domain of states of stress for which the system of plastic 
fIow equations is not evolutionary, and also a domain of states of stress for 
which shock formation occurs from smooth initial conditions (reversing of 
simple waves), These properties can also be interpreted as the properties of 
an ~coupled plasticity model with a nongradient plastic flow law. An exam- 
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ple of an unstable solution is presented for the complete system of plastic flow 
equations taking account of heat conduction. 

1. The simplest model of coupled thermoplasticity is obtained under the following 

assumptions on the free energy F, uncompensated heat dq’, the flow surface f and its 
associated law : 

p,F = AijkrEije&kle f Ui’&ije (T - To) - T (T - To)’ - PoSo (T - TO) 

dq’ z d oij dEijP, f=f(aij, T)=O, deijP=dh$, d31.0 (1.1) 

Here A”“, aij, m, To, po, so are constants, and all the notation are standard. The 

displacements and strains are considered small. For such a model p] 

oil = Aijk[akle + r$j (T - To), S = - +aij&ije + $ (T - TO) + SO (1.2) 

We obtain a necessary condition for the existence of the solution to the Cauchy prob- 

lem for the system of equations of such a model. To do this, let us consider the problem 
of determining ao,, / at, aT / at at the instant t = to for given oij, T and velo- 

cities z.J~. It is assumed that the initial values of oij, T satisfy the condition f (Oij, 
T) = 0, since otherwise aoij / at and aT / at are determined uniquely from the 

equations of elasticity theory. 
If plastic deformation should occur at the instant to then we obtain the system to 

determine (doij / at),, (a2’ / at), , (ah i at), 

af aaij 
asij ( > ,,++qg._o ) 

(1.3) 

from (1.1). (1.2) the relationship 

and the equations of the second law of thermodynamics. 

If elastic deformation occurs at the instant t = to , then we find analogously for 

(doij / at),, (aT / at), 

= Aijkle 
e’ 

_ at3eijo + m 

Discarding degeneration cases, it can be considered that each of the systems (1.3)) 

(1.4) has exactly one solution. Moreover, in order for the solution (1.3) to be admissible 
in the elastic-plastic problem, it must satisfy the inequality (ah / at), > 0, and the 
solution (1.4) must satisfy 

It is assumed here that the interior domain relative to the flow surface in o’;i, p’ space 
corresponds to f < 0 and the exterior domain to f > 0. From (1.3),(1.4) we find 
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In order for doij / dt, 6’T / 6’t to be determined uniquely for any initial data oij, T, 
vi, f (Oij, T) = 0,it is necessary that iI!f > 0. Otherwise, for the state in which 

M (oij, T) ( 0, initial values of vi can be indicated such that 

= Aijk’ )( g + ToaQejjo > 0 

and therefore, it is impossible to construct a plastic or elastic solution for such an initial 

state. In this case initial data can also be given so that (8f / i3t), < 0, (6% / &), > 0, 
and therefore, aoij / at, dT / at are not determined uniquely at the instant to. If 
M > 0, then (af / at), and (6% / at), have the same signs and vanish only simultane- 
ously (in this latter case the solutions (1.3) and (1.4) agree). In this case L’oij / cJt and 
al’/i)t are determined uniquely. Therefore, when constructing models of elastic-plastic 
media, compliance with the inequality M > 0 should be assured. 

Let us note some particular cases. let the form Aijk'&ijEkl be positive definite, 

m > 0, CY.‘~ = - agii. If the equation of the flow surface is taken in the Mises form 
l/soij’oij = k2 (T), oij' f aij- '/36kk6ij, then 

af al k= dk3 
M = Aijkl ~ _ + - - 

a.0’~ a2 mTo dT 

The condition M > 0 imposes a constraint on the assumption of the rate of diminution 

of the yield point as the temperature rises. If the flow surface doesn’t depend on tem- 
perature, then 

M = AiW -$ & i-$(%-J” +& &$oij 

Since crijdf/daij>,O for media with a convex flow surface, containing the point 

Oij = 0 internally, in order to satisfy the condition M > 0 it is sufficient that 

a t?f / 8p < 0, p E - 1/3 ukk In particular, this is satisfied for the propagated con- 
dition‘ i/#ijoij = F (p), dF I dp > 0 for a > 0. 

In the case of uncoupled plasticity theory (aij = 0, 6’f / 8T = 0) M = A*” 
(811 aoij) (8f / dCJ kl: , we arrive at the known result obtained in [l] for flow surfaces ) 
with singularities and for hardening media also. 

2. If the medium is isotropic, the expression for the free energy becomes 

poF = ‘/rJ (&kke)’ + pCijeCije - CZ (3h + 2p) (T -- To) E&he - 
‘/,m (7’ - To)’ - pose (T - TO) 

Let us examine the motion of such a medium by plane waves for us = 0, G13 = 
$3 = (522 - (333 = 0 (compliance with these equalities at the initial instant is suf- 
ficient). The Mises condition 1/2 O;jOij = k2 then reduces to 3/a (oii + P)” $- 
cria2 = k2. let us introduce the new variable 8 

G-2 = ksin8, 1/Z 1/S(all+p)=kcos8, 0<:8<2n 
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In the case under consideration, the system (1. l), (1.2) and the equations of motion 
describing the plastic flow of the medium reduce to 

(2.2) 

(2.3) 

We write down the equation of the second law of thermodynamics governing the heat 
influx by the Fourier law 

aT 
%-- 

=3a~++!.E+~g (c sz m + 9cGK) (2.5) 

Let us first consider a corresponding ideal system describing the large-scale phenomena 

(4 l)-(2.5). The passage to the ideal system is accomplished by neglecting terms with 
higher derivatives, and in this case is equivalent to considering adiabatic processes or 

to the assumption x= 0. In this case, by using (2.4) (2.5) Eq. (2.2) can be given the 

Equations (2.1) - (2.3), (2.6) form a closed ideal system of plastic flow equations. 
let us note that this system can be considered as the equations of uncoupbd plasticity 
theory for a medium with the same flow surface but with a nongradient plastic flow 

law. The system under consideration differs from the equations of uncoupled plasticity 
theory with a gradient law only by the insertion of K, instead of K and by the presence 
of the last member in (2.6). The ratios k, / rZ and (K, - K) / K are on the order 
of 10-a for steel, say, hence, neglecting thermal effects is justified in many cases. But 
as is shown below, for plane waves in which the tangential stresses on areas parallel to 

the front are close to k, taking them into account is of value, in principle. 

Indeed, let us consider the characteristic equation of the system (2.1) - (2.3), (2.6) 

Here C is the characteristic velocity, Equation (2.7) has two pairs of roots & c,, 
IfC_ (C+$ > C_*).It a = 0, then the roots C,“, C_” of (2.7) are real, where C,’ > 

V-P 1 PO, and C_’ vanishes for 8 = n/2 (3n f 2) [s]. In case a + 0 , the changes 
in the coefficients of (2.7) which are small compared to K cause small deviations in 
the quantities C, dC i & from c”, dC” / de. However, these deviations can turn 
out to be substantial near points in which Co = 0 or dC” / de = 0. Thus, fnom(2.7) 
we obtain that p,~c_~ < 0 for 

0,<0,<nl2 (33t / 2 < e < 23t - e,), 8, - arccos k, I kl/% 
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The characteristic velocities become imaginary. The sign of dC: 1 de agrees with 
the sign of + sin 8 cos 8. Differentiating (2.7) with respect to 8 we find 

d (PoC+~) 
‘gn d3 = 

k sgn [p&+2 (F + K, cos 0*) sin 8 + Klp (2 cos 8 - co.9 e,) sin e] 

Hence, it is seen that d (p. C_“) / dfl changes sign for 8 = 8, E (I),, n / 2), 8 = 
0, 8 = n and at their symmetric points relative to 8 = rr ; d (P,,C+~) / de changes 

sign for 8 = 8, E (x / 2, x - arccos [3K,k, / 2 flkpl), 8 = 0, 8 = n and 
at their symmetric points. 

The dependence of the characteristic velocities on 8 is illustrated in Fig. 1 (also pre- 
sented for comparison are corresponding dependencies for a = 0). The quantity P,,C+~ 
reaches the maximum K, + 4 p/3 for 8 = I),, the minimum- K, (1 - k,/,Qf/3) 
for 8 = 0 and has a local minimum K, (1 i k, / k I/z) for 8 = n. For rr < 
8 < 2n the graphs are symmetric to those presented relative to the line 8 = x. 

An essential singularity of the ideal system under consideration is the presence of the 

imaginary characteristic velocity. The Cauchy problem for such a system is formulated 
incorresctly [4]. This fact can be interpreted as either the result of selecting a nongra- 

dient flow law in the uncoupled model, or the result of neglecting the heat conductivity 

in the coupled model. If the heat conductivity is taken into account, then the system, as 

compared with an ideal system, loses a pair of imaginary characteristic velocities, and 
the remaining characteristic velocities are real_ 

Let us‘show that the system (2.1)- (2.5) is evolutionary, i.e. that Im o (I) has an 
upper bound, where o (I) is the root of the dispersion equation of the system correspond- 
ing to real 1. The dispersion equation is 

- (2.8) 

Here D is defined by (2.7) and D” denotes D for a = 0, D” (C) = !) is the charac- 

teristic equation of the uncoupled model. Equation (2.8) is algebraic, hence, unbound- 

edness of 1m o is possible only for o --f co. Simultaneously there should be 1 + 00. 

If o / 1 is hence bounded, then 

where the expression in the bracket is bounded, and therefore w / 1 = Cl; + 0(1-l), 
Im 0 = 0 (1). If 0 / I + 00, then D (o / 1) / D” (co / I) + 1 and it follows 
from (2.8) that 

io --= 
la $$ + o(l), Im Q 9-W 

Therefore, the system (2.1) - (2. $) is evolutionary. 
It is impossible to seek a perturbation of the form AeiU=oO in investigating the 

stability of constant solutions of the system (2.1) - (2.5) (for them, in particular, ah / 
at = 0) since for such perturbations there are segments on which (dh / dt), > 0 

and segments with (6% / at), < 0 at the initial instant. The flow picture will have 
a complex structure of alternating plastic and elastic domains at subsequent instants, 



1036 Ia.A.Kemeniarzh 

which abut on the appropriate segments in conformity with Sect. 1. However, such a 
method is applicable to an investigation of the stability of the plastic solutions in which 
8h f dt > 11, > 0 relative to the small ~rt~batiom not reducing cry, T from the flow 
surface. 

For example, let us consider the stability of the simplest non-constant solution of the 
system (2.1) - (2.5) 

(3 = SO = const, p = p. -+ prt, vi -= l/zA 1/z&g 8, x 

va=Ax, T ==& iv’ A ;3ctg Oot2pltiK Jr ( bA i- + P,) x2 -i- ff] 

ah -=&>(A b= ~~ (cl’0 GOS 00 - 2 y’hk) 
at 2sin 80 3c (2.91 

Here A > 0, N, p1 are arbitrary constants. ft is possible to consider (2.9) for 
- oo < x ( co as a solution of the Cauchy problem with appropriate initial data 
for v,, us, p, 6 or for - L < 5 & L as the solution of a boundary value problem 
with the boundary conditions 

vi = -!+-$ AL 1/&tg O,,, v2 = & AL, -$- = +- (34-l (bA -t- & Tt, p,) L 

for 5 = f L 

To investigate the stability of this solution, let us linearize the system (2.1) - (2.5) 
around it. The system coefficients depend only on 0 hence, the linearized system has 
the same form as the system (2.1) - (2.5), but CJ, must be substituted into the coeffici- 
ents in place of 0. Moreover, a new term originates during linearization, namely : 
A (2 sin 8,)-t 6 is added in the left side of (2.3). Small additions to the solution 
(2.9) are understood to be 8, ur, us, p, T, 

An analogo~ change occurs upon com~s~ng the determinant u* ( W, I> to compute 
the dispersion equation of the linearized system: a term iko I 2p. + A (2 sin Go)-” 
appears in place of ikw ’ / 2~ in the row corresponding to (2.3) and in the column cor- 
responding to 0. Therefore, the equation D * (w , E) := 0 contains, besides all the 
terms of the dispersion equation of the system (2.1) - (2.51, additional terms generated 
by the addition of A (2 sin 0,)-l. Hence, in addition to all the additional terms of the 
form aA (2 sin $O)-1 WW there is the term ai,% ~2~~-l~p~lZ~ which is also present 
in the dispersion equation of the system (2.1) - (2.5). For W .+ 00 the additional term 
can be neglected as compared with a& (2~)~” wp@la, hence the equation L)’ (0, 

11 = 0 cannot, exactly as (2.8), have the roots o (I) with Im 6.1 without an upper 
bound, Therefore, the growth rate of the small perturbations of the solution (2.9) is 
bounded. 

The dispersion equation of the linearized system is 
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where p is defined by (~2.7)~ and j3” denotes fi for 01 = 0. There are roots in the right 
half-plane for Eq. (2. lo), Otherwise, all its coefficients would have the same sign, but 

the coefficient of 52s is positive, and of Q is negative if 8, < 6 < nl 2 and ~4 is 

sufficiently small. 
Therefore, the equation D* (0, 1) = 0 has the roots w = iQ, Imo > 0. Con- 

sequently, the solution (2.9) of the Cauchy problem for - oo < J: < oo is unstable. 
Equation (2.10) is invariant relative to replacement of 1 by -E, hence, the global 
instability of (2.9) as a solution of the boundary value problem for sufficiently large L 
[5] also follows from the existence of the roots w, Im w > 0 . 

Finally, let us consider the question of reversal of the simple waves of the system 

(2.1) - (2.3), (2,6). The equations describing simple waves, for which 8 can be taken 
as the parameter (*) , are 

dvl k vs PO@ - p CO@ 8 
- -z-== 2* p0C sin 9 

(2.11) 

where c is determined from the characteristic equation (2.7). 

From (2.7) we find 
Poc_2 G I-5 ~,C,a>k’,(~--~) 

It is here assumed that R i l.& > 413, and therefore, ~~6,~ > p for sufficiently small 

k, / k. Because of these inequalities it follows from (2.11) that the sign of 86 / dt 
agrees with the sign of ctg 8 in slow simple waves, and is opposite in fast waves. Taking 

this relationship and the sign of the derivative d (psC$) / & into account (see Fig. 1). 

&_____ 

i/” -- ---r--- 

t 

Fig. 1 

*) Simple waves in which it is impossible to take 0 as the parameter (0 = coast) are 
propagated without a change in shape. 
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we obtain that the condition for reversal of waves being propagated to the right ,j’C / 
dt > 0 is satisfied for n / 2 < 8 < 0” (2n - 8, < 0 ( 3n / 2) for fast plastic 

waves. Therefore, taking account of thermal effects results in the need to consider jumps 
in the plastic domain in contrast to the uncoupled model [S]. In those cases when the 

jump is of sufficiently small intensity, for example, if it originates because of reversal 
of the simple wave and 8, - n / 2 is small (this quantity is on the order of 10-a 
for steel), the relationships between the quantities in the appropriate simple wave can be 

used as approximate conditions on the jump, and the rate of propagation of the discon- 
tinuity can approximately be considered equal to the average of the values of the appro- 

priate characteristic velocities ahead of and behind the jump. 
The author is deeply grateful to A. G. Kullkovskii for valuable comments and to L. I. 

Sedov for useful discussion of the research. 
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The progress made in the theory of integration of equations of motion of holo- 
nomic systems naturally leads to attempts to extend the basic assumptions of 
this theory to nonholonomic systems, or at least to establish the conditions for 
their applicability to nonholonomic systems. Problems of this type were the 

subject of many papers by various authors. In particular, numerous attempts 

were made to extend the Hamilton-Jacobi method of integration to the nonho- 
lonomic systems (see [ 11). Below we discuss the problems relevant to the lat- 
ter problem. 


